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This papér deals with the first bgﬁgggry problem aééociadgé'w1th the - v
fully nonlineag equatign u! = Min{y,Au} on the set @& x (0;%), where .§ is

a domain of R/ and (x) is a given obstacle such that $2 0 on Q_,—»—-—— 20n =
Formulating the problem (occurring in heat control) as an Evolution’

Variational Inequality, R. Braw)btained the existence and uniqueness of i
H_(R) ;

weak solutions in the space as well as weak convergence to an unknown

equilibrium point of the equatYon\(when t qoes to infinity). The strong ‘

convergence of the solution to thé zero equilibrium point is shown here, i
provided the ohstacle is positive and subharmonic. If in addition '

. @(x) t)] @ .0 then the asymptotic behaviour is completely described in the

sense that the solution satisfies the linear heat equation b= M on 00"1‘ - X
('ro )'x 8, \T.o™ being a finite time. To do this the results are first )
pre?ZZteﬂ for gronq solutions (th:t is, those which satisfy the equation ;
a.e The facE that under more regularity on the initial datum the weak ¥
80 tlon ig alsd a strong one and cértain useful comparison principles are .
prpved W sing \;:he theory of accre!’;ive operators in Banach spaces. |
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SIGNIFICANCE AND EXPLANATION

Problems arising in heat control theory are often modeled by Parabolic
Variational Inequalities (PVI) (see G. Duvaut-J, L, Lions [16]). One example
of such problems, considered in this paper, corresponds to the case where the
temporal temperature variation of a body or fluid f of RF is not allowed
to be greater than a given positive function (called "obstacle").

In an earlier work (8], H. Brezis has proved that the PVI arising in such
a situation can be formulated as an abstract Cauchy problem on the space

H;(Q), and he obtained the existence and uniqueness of solutions by means of
the theory of maximal monotone operators. Using this theory, he also proved
in (8] that the solution converges weakly in H;(Q) to an equilibrium point

when t goes to infinity. Similar to other nonlinear evolution equations,

i
H
i
3
N

there exists a larqge set of such equilibrium points. An important question is
to decide how the solution selects an equilibrium point among all them and
whether the convergence to it also holds in the strong topology.

In this paper some answers to both auestions are given by setting the
problem in a different framework. It is easy to see that solutions being more
regular ("strong solutions") satisfy a fully nonlinear paraholic equation.
Such strong solutions are ohtained via a "dual" problem that is shown to be
*well possed” in L1(Q) in the sense that the accretive operators theory can
be applied, assuming that the obstacle is sufficiently smooth. It is also
shown that the "direct problem" is well possed in L”(Q) for more regqular
obstacles.

Adapting a curious comparison result of Ph. Benilan and J. I Diaz ([3})
some estimates are ohtained. Finally it is shown that the solution converges
strongly in H;(ﬂ) to the zero equilibrium point when the obstacle is assumed
to be a subharmonic function on f. 1If in addition the obstacle is strictly
positive, then the asymptotic behaviour is completely described because it is
shown that the solution verifies the linear heat equation after a sufficiently

large time TO. Different results on the strong convergence and the selection

of the equilibrium point are also given,

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON A FULLY NONLINEAR PARABOLIC FQUATION AND
THE ASYMPTOTIC REHAVIOUR OF ITS SOLUTIONS

J. Ildefonso Diaz*

§1, INTRODUCTION

Let & he a smooth bounded domain in RN. Givan ¢ 6 Lz(ﬂ) with ¢ 2> 0 a.e. and

u0 [+] Hé(ﬂ) ve considar the problem of finding a function u(t,x) satisfying

u, = Min{y,Au} on (0,@) xR
(1) u =0 on (0,®) x 3R
u(0,x) = uo(x) on &

Such type of problems occur in heat control (see [16], Chap. 2). Formulations as (1)
also appear in a non-standard statement of the Stefan problem (see later Remark A.1) as
well as in some particular case of the so called Bellman's equation of Dynamic¢ Proqramming
(see Remark 5).

Problem (1) can be expressed in a weak form by means of the following Evolution

Variational Inequality

u €K K= {ve H;(Q) : v<&Vy a.e, on 0}

(2)
f u (v - u )dx + f grad u*grad(v - u_)dx » 0 ¥ v &6 K and t > 0.
Q t t Q t

The existence and uniqueness of a solution of (2), for each U, 4] H;(Q), was proved by H.
Brezis in (8] (see also [5]). Also the asymptotic behaviour is considered in (8] by means
of the abstract result on asymptotic bhehaviour of solutions of evolutions equations. It is

shown there that u(t,x) converges weakly in H;(Q), when t * ®, to a function

*Universidad de Santander and Universidad Complutense de Madrid, SPAIN

Sponsored by the Inited States Army under Contract No., DAAG29-80-C-0041,
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u,ix) @ H;(ﬂ) satisfying

(3) Min{du_,¥} = 0 on R

in the sense that

(¢) f grad u qgrad v dx ? 0 VyveK.
1]

Nevertheless it is neither known how the solution selects an equilibrium point among all of

them nor if the convergence also holds in the strong topoloqy of H;(ﬂ). Both questions
ware proposed in [8) and they are, essentially, the main aims of this work.

Our methods for the study of the asymptotic behaviour are based on considerations made

o3
3
-3

1

in terms of strong solutions i.e. solutions which satisfy (1) a.s. Because of this we will

T, SR T
——— e =

l first consider some reqularity results. On this respect it is not difficult to see that if

the golution u of (2) is such that A4u(t,*) € L'(Q), for t > 0, then u is a strong

R AT ST

e e

solution. Nevertheless not every solution of (2) is a strong solution. For instance, when
Y20 and u, is such that Auo >0 in D'(1) it can be directly verified that -3
u(t,x) = uo(x) ¥t >0 and then u is a strong solution ift Auo e L‘(Q). We ghall

show that if ¢ ¢ H‘(ﬂ) with (-4y)" @ Lz(ﬂ) and M, € L’(ﬂ), the solution of (2) is a E

[PV —

0
strong one and catisfies Au & C((0,%) : L‘(ﬂ)). (A stronger regularity result will also

2 -«
be obtained when ¥ & C°(I) ana bu, € L ().

T T

The main result in our study of asymptotic behaviour of the solutions shows the strong
convergence, in H;(ﬂ), of the solution to the equilibrium point zero provided ¥ > 0 and
AY > 0 a.e. on . If in addi:don Y(x) > 8 > 0 a.e. x @R (for some §) then the

asymptotic behaviour is completely described in the sense that we show the solution

verifies the linear heat equation ut = 8u on (TO,-) x 1 for an adequate finiée time

[Py "t

Tb. Other answers on the strong convergence and the selection of the equilibrium point are

also given.

-

The essential tool in our treatment of (1) is the consideration of the "dual® (or

adjoint) prohlem

2=
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vt(t,x) - AB(x,v(t,x)) = 0 on (0,%) x @

P* { B(x,v(t,x)) = 0 on (0,%) x an
v(0,x) = vo(x) on &
where
(8) B(x,r) = Min{¥(x), - r} ae, x@Q, Wrer.

The existence of solutions of Pp* {n L‘(ﬂ) implies the existence of stronyg
solutions of (1) using the relation v = -Au.(‘) The former question, that is the
existence of solutions of P*, has heen very much studied recently but, as far as we know,
the term B(x,r) (a maximal monotone graph of R2 for a.e, x € 1) is always taken in
the following two cases: a) B(x,r) is independent of x, b) B{(x,r) is onto a.e.

x @R ([9))s Notice that the B(x,r) given in (5) is neither in case a) nor in case
h)s Anyway, using the theory of Variational Inequalities we shall show that P* is a
*wall posed® problem in L'(%) when ¥ & #'() ana (-A)" @ 1.3(9).

The strong solutions of (1) satisfy

ut(t,x) + B(x,-4u(t,x)) =0 on (0,°) x Q
P < u(t,x) =0 on (0,%) x 3R

u(0,x) = uo(x) on @

with B gqgiven by (5). We shall show that P 1is "well posed" on LG(Q) when V¥ @ Cz(ﬁ),
then it is possible to obtain more reqular solutions of (1), (P has previously studied in
Benilan-Ha [4) when B(x,r) 1is in case a) or b)).

This paper is planned as follows: In Section 2 the existence of strong solutions of
(1) is8 proved when V¢ & H‘(ﬂ) and Ay is a measure such that (-Ay) € Lz(ﬂ), besides,

such solutions are shown to be more reqular if ¢ 6 Cz(ﬁ). The arquments of duality

(1)Duality arquments have already heen used in G, Diaz-J. I, Diaz [14],

-3-
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between (1) and P* are also presanted. In Saction 3 we show several compariason results
of dAifferent nature. Finally, in Section 4, the asymptotic behaviour is considered,

Somo results of the theory of evolution equations qoverned by accretive operators in
Banach spaces are used through the paper. xn\n;voral appendices we present & summary of
the abstract theory as well as the proofs of th; fact that the abstract hypotheses are
satisfied when problems P and P* are studied as abstract Cauchy prohlems on L.(ﬂ) and

L‘(ﬂ) {or H-1(ﬂ)) respactively.

$2. ABOUT THE RFGULARITY AND THE DUAL PROBLEM,

In the following it is useful to recall the essential part of the proof of the
axistence and uniqueness of solutions of (2) given in (8). It is based in the fact that

(2) can be eaquivalently formulated as

(6) [ grad uearad(v - u )ax + w(v) - (u,) >0 Vv e HY(R) and t > 0
a

whera ¢ is a convex l.s.c. function defined on H;(ﬂ) by

%-f Ivl|%x if vex
f

(7 ¢(v) =
4o if vex,

Introducing the conjugate convex function of ¢ by

(8) ¢*(x) = Sup {f qgrad x°grad y = w(v)}
yeH, (R)

inequality (6) can be written as -u @ 3\9(\1'__) or equivalently

(9) u, - dww(-u) 3 0.

By the theory of maximal monotone o?eratots on Hilbert spaces ([7]1) it is known that for
H_()

anv u, 8 H;(Q), v, € D(-39%(=*)) ° there exista a unique solution

u & C(10,®) : H;(n))n wl;;((o,w) : H;(ﬂ)) of (9). In additien

SIS WPV PEY NER Y
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(10) ult) @ D(-3¢*(=*)) for any t > 0 ' 2

Finally by the results of [5] (Proposition I1.10 and Lemma II.7) we have that N(=0¥*(as))

b, k0 2 el

is a dense set in H;(G). So the result of (8] follows.

TR

As it has been pointed out in the Introduction we are interested on the solutions of

e e e -

(1) that satisfy it a,e, Such functions will be termed strong solutions of (1) in contrast

3
F

to the solutions of (2) or weak solutions. The following lemma enlinhtens the connection

between weak and strong solutions.

it ke

1
| Lemma 1. Let ¥ & L2(R) with ¥ > 0 a.e. and let u & C((0,®) 1 HI (M) N

R

' wlé;(o,- ? H;(ﬂ)) be such that Au(t) & L‘(Q) a.,e, t > 0. Then, u is a weak solution

'( of (1) Lff u is also a strong solution.

i et e

ok L e d

Proof. Suppose u is a weak solution of (1) such that Au(t) ¢ L‘(Q) a.e, t > 0, 3

Taking v = L T in (2) with 7 € D (R), a simple integration by parts shows that

S Y Y

ut(t) € Au(t) a.e. and also that u is a strong solution of (1). On the other hand, it

1,1
loc

T T T e s o

w e c(lo,®) : n(’)(n)) S NMILE H;(Q)) satisfies (1) ae, it it clear that u G K and

also
=dut (v - ut) > -ut(v - “t) a.e, on 1 for a.,e. t >0, ¥VG&K
Then it is enough to applv lemma 2 of Brezis [6] to P = =-Au, w = v - Uy
h=gm -ut'(v - “t) and remark that (F,w) = f grad u*qrad(v - ut)dx. . i
Q

A first answer about the regularity of the weak solutions of (1) is the following:

epilae fie

Theorem 1. Assume V € H’(Q) such that $ 20 on & and (-ay)~ @ Lz(ﬂ). let

v, -] H;(ﬂ) with Auo € L1(ﬂ)- Then the weak solution u of (1) satisfies

Aw 6 C([0,=) : L‘(Q)).

As we have said in the Introduction, the proof of Theorem 1 comes essentially

i ks

considering the problem P* (when B is given by (5)) formulated as an Abstract Cauchy

one on the Lzﬂ) space

(Z)We identify u(t,-) with u(t),

—5-
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%% +Av B0 in L’(ﬂ). on (0,%)
(1)

v(O) - Vo E

A being the operator on L'(ﬂ) given by

DIA) = {w @ L' () 1 B(x,w(x)) @ w“)"m) and AB(x,w(x)) @ L' (@)} ‘
(12)
Av = AB(e,w(*)) if w @ D(A) ,
The following result is proved in Appendix 2.

Proposition t. Asasume V G H‘(R) such that % 2 0 on 8 and (=4¥)" @ L’(a). Then for

TR P T

svery v, € L‘(Q) there exists v @ C([0,%™) L‘(ﬂ)) unique L‘(ﬂ) semigroup solution ]

PSR!

of b

A firgt duality result is given by the naxt lemma.

Lema 2. Assume ¥ G H'(R) such that ¥ >0 on @ and (-a¥)” @ L3(%). lat B the

operator on the H;(R) space given by

1
;
(13) B(9) = =3y¢n(-0) ¥V 8 G D(=3¥e(_)) T D(B) , j
Consider b @ D(B) such that «Ab & Lz(n)(a). Denoting & = (I + AA)"(-Ab) for every ;
‘ A>o0, then a @) and (-8)"'a = (1 + AB)"'b,
3 l Proof. The definition of a implies (for instance when A = 1) 3
i i
e a(x) - AB(x,a(x)) = =Ab{x) on R
E
3 (14)
‘ B(x,a(x)) = 0 on 30 ., ]
3
As it is seen in Appendix 2 (Lemma A.4.) the previous problem can be formulated as a 1
Stationary variational Inequality. Then the conclusion a € Lz(ﬂ) comes from the )
hypothesas on Y. On the other hand, as Lz(ﬂ) c n“(n) then ;
(-8)7"a = b* & H1(A) N HE(A) and
(15) b*{x) = b(x) = Min{¥(x),4n*(x)} .
E|
‘ From (15) b* = h @ X and besides
(3)Por simplicity in the notation we identify =-A with the r2ronical isomorphism A
from H7(?) onto its dual H-1(q), ]
i -6-
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b*(x) = b(x) = Ab*(x) a.e., x @ {x € Q1 (h*(x) = bix)) ¢ ¥ix))}

b*(x) = bi(x) € Ab*{x) a.e. x @ {x @ Rt (he(x) = hix)) = Px))}

Then, for avery v € X we have
] (=Ab* 4+ (b% = b))(v = (b* = b))ax ? 0O
Y]

and integrating by parts

[ arad bregrad(v = (h* - b))dx + ¥(V) = ¢(b* = b) » 0
f

namely <h* @ 3¢(b* « b) i.e. b* + B(b*) 8 h. ®

We are ready now to prove Theorem 1,

Proof of Theorem i, From Proposition 1 it is enough to show that if u

is ths weak
solution ~f (1) then <Au({t) coincides with v{t) the unigue L1(ﬂ) samigroup solution

of P* correaponding to the initial datum Vo " —Auo. It ia Aone in two steps: a)

L (-] Hé(ﬂ) n Hz(ﬂ) and b) Ug in the general case,

Case a). By definition v(t) = lim v _(t) where vn(t) are piecewise constant functiona

N+
detined by v (&) = a: for XA <t < (k+ DA, a; ¢ DIA) satisfyinq
an - an

—k—-r-—k-:-’-+l\a:-0 K = 1,44s,n
n

n
a, = -Auo

and Xn > 0 heinag such that Xn< 0. It is clear that az - (I + XnA)'n(-AuO) and then

a G 12(8) because of Lemma 2. Defining o - (-A)"a;, b = (1 + AB) Mug nolds.

0
Therufcre by definina un(t) - (-A)-1un(t) = h: for kkn Stttk + 1))\n we have

~Ault) = <A(lim un(t)) = lim(-Aun(t)) = 1im vn(t) = v(t)

for the m-accretiveness of B in H;(ﬂ).

1 2 1
Case h), let un'm [~ Hn(n) N H(Q) he such that A“n,m + Aun in L (Q) as well as in

H'l(ﬂ) {ohviously then ug m * 0 in H;(ﬂ)) when m * ®,  aAg the semiaroup generated
’
-7-
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by B 1is continucus on H;(ﬂ) it follows that um(t) + ule) in H;(ﬂ) (then

Bu_(t) * Bult) {n H'(R)), being u, and u_ haing the solutions of (1) for the

m
initial datunm U, and Yo, m respectively, Analogously, by the continuity in L’(ﬂ), of
the semiqroup cenerated by A we have -Aum(t) * v(t) in L’(ﬂ). where v(t) is the
solution of P* with respect to the initial datum Vo " -Auo. Therefore v{t) = -du(t)
for any t > O ®m

Remark 1, Another reqularity result follows by using different methads. Pracisely if

v e Hz(ﬂ) n H;(ﬂ). V>0 on R, and u, € H;(n) n n’(n) then the weak solution u of

0
(0,® : Hz(ﬂ)) (see Remark II. and Theorem II.13 of Brezis [5)). It

(1) verifies u @ L1°c

is clear that Theorem 1 improves Brezis' result hecause it can he applied to a wider claas

of obstacles and initial data (for instance when Y(x) > § > 0 on 0 for some ).
Supplementary hypotheses allow us to find a more recqular solution of (1),

Theorem 2, Assume V¥ @ Cz(ﬁ). ¥>20 on U, et u, @ H;(ﬂ) be such that Au° < L-(ﬂ).

0
Then the weak solution u of (1) satisfies

u e W' 0,®) x ) N L7(0,% 1 HHAR)) and Ault) @ L7(A) ave. t >0 .
To prove Theorem 2 we consider (1) (or equivalently P with B aqiven hy (5)) as an

[ 3
Abstract Cauchy Problem on L (), 1i.e.

au — -
Frhs Cu® 0 in L (), on (0,%)
(16)

u(0) = FO

o
C bheing the operator on I (%) gqiven by

DIC) = {w & LT A BIR) ¢ bw 6 17(R), min(y,aw) & LO()

(17)
Cw » =Min{¢,Aw} if w 6 DB(C)

The two results stated helow are needed for the Prnof of Theorem 2 the first one being
shewn in the Appendix 3.

Propogition 2, Assume ¢ & C?(ﬁﬁ, ¥ 20 on T, 1Let u, & H;(Q) he such that

- -] — o o
Ann € L (). Then there axistr u & C([0,®) : L (Q)) unique 1 (})- semiaqroup solution

-8
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of (16) (or PB). Moreover 1 & w0, 2 Q) N L0, 1 w3 (R)) and

— L
du @ L (10,of x R),

Lemma 3, Let b & h(n) N DiC)e Setting ¢ = (I + AC)-1h, then o = (1 + XB)-1b. for any

Ay 0.

R e it

Proof. From the definition of ¢ it follows that

c(x) - AMin{y(x),Ac(x)} = bix) on @

clx) = 0 on 9D .,

A8 ¢ «h @ K (hecause c 6 D(C)) it is easily seen that -¢ € a¥(c -~ b} proceeding ac

Proof of Theorem 2. It is enough to see that the weak solution u of (1) coincides with

b, v
E l in Lemma 2. ®
4

-] — -—
the L () semiaroup solution, u, of (16) corresponding to the initial datum uo - uo.

Without loss nf generality we suppose u0 6 D(B). PRy definition ult) = lim G;(t) where
n-bﬂ
un(t) are plecewise constant functions aiven hy G;(t) = bi for kkn €t ¢k + 1)An,

n

. hk 6 D(C), satisfying
b: - b:—1 n
4 Ch =0 ko= lu.,n
1]
n
h0 = u0

(or eguivalently h: = (T + XnC\-nuo) when Xn > 0 is such that An + 0, Thanks to

co s -n . .
lemma 3 it is known that h: = (I + XnB) uo. On the other hand, R heina m-accretive in

pl@), u(t) = LimT_(t) in K () and u(t) = u(t) holds, ®
0 . n 0

§3, COMPARISON RESULTS,

The following comparison results will be used in the next section under the present

formulation which is not the most aeneral one that we could consider.,

g Tet us start with two lemmas.

. -9
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. (19) u(t,x) < mtn{uo(x) + tv(x),h(t,x,O.uo)} ae. xG® and t>0.

E
F
4

h(t,x) = v(x) on 9.

Lemma 4, let V @ Lz(ﬂ) with ¢ > 0 a.e, on 1 and let v, q H;(ﬂ). Set h(t,x,T,v) 3
be the solution of the heat squation ";
h, = & on (T,%) x 0 E

(18) h=0 on (1, x 3N “§
i

g

3

Then if u is the weak solution of (1) we have

ot b hall i g 012

Proof. By the reqularizing effect (10) we know that for any t > 0, u(t) € D(B) and so

%% (t) § K i.e, %% (t) € ¢ a.,e. on . Inteqrating on the t-variable it follows

u(t) - Y, € ty(*). To show the inequality u € h 1let [ € Lioc(o,' s H;(n)) be such 3
that §(t,*) > 0 a.e. t >0 and x 6 0, Then v = %% - § € X and substituting in (2) ;

we have

f u_*Cdx + f grad u*qrad(v - u _)dx € 0 .
a8t Q t

On the other hand

f h _*8dx + f grad hegrad §dx = 0 . .
t b
] Y] 3
Then choosing § = (u - h)+ and substracting the abhove expressions we obtain ]
%:—t Bu =", 4 [ qrad(u - h)egrad(u - h)'ax < 0, 4
L (ﬂ) f 4
So I(u - h)+(t)| 2 < Hu - oo 2 holds which finishes the poof. m %
L () LM ;
2 1
Lemma 5. Assume ¢ € L°(R), ¥ >0 on f and vy, € HO(Q) i =1,2, Then if u, is ;
— 0 —_— -
the weak solution of (1) corresponding to “0,1' it follows that :
E

Mu, it) = u(en*r < Mu -u. h
1 2 Lz(n) 0,1 0,2 Lz(n) J
and ;
-10- o
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Proposition 4. Let V¥ € L) with § > 0 a.e, on 9. For i =1,2, let Ya,q € H:)(Q)
and denotes by uy the associated weak solution of (1). Then -Au0,1 £ 0<% .Auo'2 in
D'(R) implies -Au1(t) €0« -Auz(t) in D' () a.e. t >0,

Proof. It is easy to see that vi = -Aui, { = 1,2, are the H"‘(ﬂ) semiqgroup solutions

,
b
¥

!
\
‘
;
t
i
i tialliasnbis i ".J‘mM

Tu,(t) - uz(t))-le(n) < My, - u°'2)-'L2(n> . é
In particular when u, > 0 (resp, ug ¢ 0) a.,e. on § we have u(t) > 0 (resp. i
u(t) € 0) a.e. on # and t > 0. é
Proof, Immediate from the proof of the previous lemma taking h(t,x,0,0) i.,e. h =0, ® g
Remark 2. Better comparison results could be obtained using the fact that P is "well é
posed" on L.(ﬂ) under supplementary hypotheses (on ¥ and ug). E
The two following results are derived from the m-accretiveness in H;(Q) of the g
operator B as well as the theory of Variational Inequalities. ~§
Proposition 3. let ¥ € 1%(@) with ¢, >0 a.,e. on f for i =1,2. Assume é
u, ¢ HL(Q) and let ul be the weak solution of (1) corresponding to the obstacle V.. i
Then ¢1 < Wz a.e. on {1 implies u1(t,x) < uz(t,x) a.e, on (0,») x Q, %
Proof. Taking into account the definition of the H;(ﬂ) semigroup solution it is enough ;
to see that when ui(x) € H;(ﬂ) verifies é
%
ot 42 ui = f 1

¢i

(with £ ¢ D(BW )} then u1(x) < uz(x) a.e. x € ., Proceeding as in Appendix 3 (Lemma 4
i

A,8) we know that the functions Gi = ui - £ are solutions of the Variational Inequality

qgiven by :i 6K = {ve H;(ﬂ) : v(x) € Xwi(x) a.e. x &8} and

| qraa ;'grad(v - wax + %-f Ulv - u)dx > (Af,v = u)
Q

B H"(ﬂ)xn;(ﬂ)

~

Vv e Ki. Therefore from Proposition 1.9 of Rrezis [5) we get u1 < ;2 a.e. on & and

the proof ends. =

of the Ahstract Cauchy Problems
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g—‘é\xzvao in w(8), on (0,%)

(20)

v(0) = Vo

corresponding to the initial data Vo * -Auo g where E is the operator in H”(ﬂ)
,

defined by

(21) E = (-8)sBe(-8)") ,

(we recall that E is an m-accretive operator on H”(ﬂ), see Appendix 2). Then it is

enough to prove that when vi(x) e H'1(ﬂ) verify

vt - a; on ey ,

(qi [~ 5-1(9), being 9, < 9, in D'(f1) and g, or g, identicial to zero) then
v1 < v2 in D'(8), Arquing as in Appendix 2 it is easily seen that the function
h, (x) = -Hin(*(x),-ui(x)} is the solution of the variational Inequality

hi ekt = {we H;(ﬂ) t wix) » -¥(x) a.e. x € %} and

A [ grad h, egrad(w - h,)ax + [ h (w - h,)ax > (g ,w = h )
a 1 t o ! i 1 a0yl (2)

¥V w & K*, Therefore, by applying the Corollary I.5 of Brezis [5) we get h1 < h2 a.e, on

1, Finally the result follows from the fact that gj = 0 implies hj = 0. »
Remark 3. Better comparison results about -Au(t) could be obtained using the fact that
P* is well posed on L‘(ﬂ) under supplementary hypotheses (on ¥ and wug). The
situation is similar to the one in Remark 2.

This section is finished with a curious and very useful estimate which is, out of

slight modifications, a particular application of the abstract result of Benilan-Diaz (3],
Proposition 4. Let V¥ € H1(9) with ¢ 2 0 a.e. on % and (-Ap)~ € Lz(ﬂ). Asgume

u. € H;(R) such that

0
_:__—L1(n) +
-8u, € D' (A) (D"(A) = {w e D(A) : Aw > 0}) .
Then
(23) h(t,x,o,z(,) ¢ -Min{y(x),8u(t,x)} a.e. (t,x) & (0,2) x @

where v, = -Min{W,Auo}.

-12-
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Proof, For a > 0 let a, 5] D+(A) be such that I-Auo - aol 1 ¢ @& Congider
L ()

a? @ D(A) verifying

4
ﬁ
3
al
3
i
O T T TR oy WORE IR [E N Wy PP '1j

a? +'XnAa? - ao for any n = 1,2,--- .

By the T-accretiveness of the operator A we have

kb i

n + (a” (ao - a? )*
Na, ~-a )} < 1fa) -a. + A —1 - 1 = 0

. 1 0 L’(Q) 1 0 n n 0 L‘(ﬂ)

i

! :
4 if z_ € Aa_. So a” < a,. and also a" 6 D+(A). Arquing hy induction there exists E
| 0 0 1 %o 1 .
S n + n n n n ’ 3
= : > > X3 > sus E
B a € D (A) such that ag=a,?a, ? a,?. a, b and 3

a: - a:_1 n

3 (24) Sy 4B =0 k=12
F n
- Set w: = Min{W,-a;). Then from (24} we have
L n n o gn
C (25) Wi XnAwk fk ?

; :

i where f; = a:_1 - a: + w:. It is easy to check that

1

| n_.n _aN Loan A} L _an

! e =a_, * Min{y, ak_1} a, Min{y, ak) Min{y, ak_1} >

n n
> = - = .
min{y, ak_1} Wit

on the other hand, if we denote h(t) = h(t,';o,;o) ghen h(t) = lim h () with
>0
1,9

n n 1
< A ] ' :

h(8) = d if Ank t <A (k+ 1), the elements 4 6 {we W, (1 : Awe L ()} and

satisfy
a" - af
k k-1 n 1 .
.—T—————Adkzo in L (n), k = 1,20.00,“ )

(26) n ;
no_" :
do = v0 vneéN.

lsing the T-accretlveness of the operator -A on L‘(ﬂ) {({,e. the operator A given by

(12) when B8(x,r) = r) we deduce from (25) and {26)

~13-
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(27 l(d: -wm*h < 1a’

- th* Cuee S 1T - whha
k L‘(ﬂ) 0
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Now by the Crandall-Liggett Theorem ([11)) and the proof of Theorem 1 we know that if

v(t) = -Au(t) then wv(t) = lim u_(t) where u (t; = a!
. e n n k
for T fixed we have the estimate

for kA €t ¢ (k + 1)A and
n n

1
max max fv(t) - a:': . a4+ (An)/ZT'IA Min{w,ao}l 1
k-1....,k(n) tG[k/\n,(kH)Xn) L (Q) L (n)

where k(n) is such that Ik(n)kn -1 < A+ By the continuity in L1 Q) of the
transformation w *+ - Min{y,-w} we have

max max = Min{y,~v(t)} - w 2 ;S en,a)
k=»1,..0,k(n) tc(kxn,(k+1)xn) L ()

with lim lim p(n,a) = 0, Then, we obtain (23) passing to the limit in (27) when n + =
aQ+® i

and a >+ 0, ®

Remark 4. In Benilan-Diaz [13) it is proved that (23) is not true (in general) without the

hypothesis (22),

§4. ON THE ASYMPTOTIC BEHAVIOUR.

Our attention is fixed, at the moment, on the convergence of the weak solution u to
an equilibrium point of (1), It is clear that, in general, the asymptotic behaviour of

u depends in an esgential way of P (for any fixed obstacle V). The following result

improves that of Brezis in some particular cases:

Proposition 5, let ¥ & L2(R) with ¥ > 0 a.e. on @, Let u GH;(Q) and u be the

0
weak solution of (1). The following holds:

i) 1f -Au0 20 in p'(R) then u(t) + 0 (strongly) in H;(ﬂ) when

t +» where u, is a solution of (3).

{4) If -bu €0 in D'(M then u(t) *u, (stronaly) in H (R) when t + =

where u_ 1is a solution of (3).

Proof: 1) Py Proposition 4 =-8u(t) > 0 in D'(). Then u(t) satisfies u_ = Au

t
a.e., t > 0 and the conclusion holds from the results abont the asymptotic hehaviour for

=-14-
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the linear heat equation, 1i) 1In this case =~Au(t) € 0 in D'(R) by Proposition 4,

Then it is easy to see that u is the solution of the problem

Iutl < ¥ on (0,%) x R
u, - bu =0 on {(t,x) 1 |ut(t,x)| < ¥ix)}
(28) u, - 8uco on {(t,x) tlu (t,x) = ¥(x))
u, - 8u>0 on {(t,x) : u (t,x) = -¥(x)}
u=20 on (0,%; x 3G

u(0,x) = uO(x) on
and so it is well known that wu(t) + u, (stronqlv) in H;(ﬂ) (see [8])). Finally, as
-4y, € 0 in D'(Q), u, is a solution of (3). =

The next theorem is the main result of this Section and quarantees the strong

convergence of the solution to zero.

Theorem 3. Assume V € Hz(ﬂ) with ¢ >0, Ay 2 0 a.e. on N and let u

€ H;(ﬂ). Then

0
if W(x) >0 a.e. x 68 u(t)*+ 0 (strongly) in H;(ﬂ) when t + %, If in addition
V(x) > & for some S > 0 then u, = 8u on (T,®) x & where T = (%-le )2/N
- - - - 0 AT))

and C, a positive constant depending only on 18],

Proof. 1°% gtep, Assume V6 C3(M), ¥ >0, Ay > 0 and u, € H;(Q) such that

hd 1
- ), ¢ » : - =
h = Auo 6 L () Set u0'+ and uo'_ belonging to HO(Q) such that Au0,+ h and

-Auo = <h . Let u, and u_ he the weak solutions of (1) corresponding to the initial
= .
data g, 4 and Y, - respectively. By Theorem 2 and the T~accretiveness of A we know

that

(29) -du_(t) € -Au(t) € ~bu () in LT(R), a.e. t> 0

From the Proposition 5 and the well known results on the asymptotic behaviour for the
linear heat equation we deduce that -Au+(t) + 0 in LQ(Q) when t * 4%, On the other

~ A L] ~
hand it is possible to find a u, € H1(9) with Auo 6 L (%) and such that -Auo < -4u

—

0,-
- +, L (D N ©
as.e. on 1 as well as -Au0 6 D (A) + Indeed, it suffices to choose Yo 6 L () such

that Gn < Min(-W,-Au0 } and then ﬁn = (-A)-1Gn. (We remark that in this case
-

Min(W,Aﬁo) ¥y so A(-Aﬁo) = Ay » 0). Therefore Proposition 4 shows that

(30) h{t,x;0, -¥(x)) € -Min{¥(x),A0(t,x)]} < -mn(wx),Au_(t,x)} <0

-15-
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where {

is the weak solution of (1) corresponding to the initial datum 60. From the
results on the asymptotic behaviour for the linear heat aequs.ion it is well known that

1) ¥t >0 h(t,x10,-¥(x)) & L (R)
ii) there exists a positive constant C (only dQepand.ng on Iﬂl) such that

(31) =SS WL SR 0,-¥(x)) € 0 ae. (£,x) G (0,%) x B
t / L (R)

-
Fatimates (30) and (31) shows that i1 $(x) > 0 a.e. x 6 % then 4u _(t) *0 in L ()
when t * + and the i_rst assertion follows from (29) and the fact that
-du(t) * 0 in LG(Q) implies a(t) + 0 (strongly) in H;(ﬂ) when t * ®, On the other

hand, if ¥(x) » § > 0, from (30) and (31) it follows that
=¥(x) € ~du_(t) < -Au(t)

for ¢t »T., T. = [C Iyt ]Z/N. Then Min{{(x),8u(t,x)} = Au(t,x) a.o.
0 o™ '% L@y
(t,x) € (To,m) x 1 and the second assartion holds.

nad 2 " p]
2" step, Take ¥ 6 C°(R) with ¥ 20 and A¢ 2 0 a.e, on f. Let u, 4 Ho(m.

Tym .Q + 10 At
Consider uO,n e Ho "} with -Auo'n 6L () and “O,n u, in Ho( ) when n « Then

if un(t) is the weak solution of (1) of initial datum u

0,n it is known that

un(t) + u(t) in H;(Q) when n + * and so the firgt assertion follows from the first

step, Besides when ¥(x) > § » 0, one has (un)t - Aun ace. on (T ,*) X Q@ with

T = [C Iyl ]2/N. Therefore by the “exponential formule" (see e.g.
Y L)
we have for ¢t » To

[7), corolary 4.4)

t -m t -m
u(t) = lim (I + = B) "u(T,) = lim (X + = B) " (lim u _(T.)) =
mree m 0 m+¢ m nee n Y

t ~m t -m
a lim (lim (I + = R) u (T )) = Um (lim (I + = (=8)) "u )T.)) =
n+® pe n n0 nte oo r n" 0

t ~m
= 1lim (I + p (-4)) U(To)

me®

-16=
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(we have identifjed -4 with the m-accretive operator on H;(ﬂ) of domain

{z ¢ Hé(ﬂ) : Az @ H;(ﬂ)}). Therefore the second assertion holds,

PR TIINE

ard step, let V¢ € Hz(ﬂ) with ¢ >0, Ay >0 a,e.on ! and u_ @ H;(ﬂ). Consider

0

v e 2@ with 89 >0 such that My 1. <IN, and ¥+ ¥ in #2(Q) when

L () L ()

n * %, Argquing as in the above step it is enouqgh to prove that if u, is the weak

cvsiotaiol, el e

solution of (1) corresponding to the obstacle Wn then un(t) + u(t) (strongly) in
H;(J) when n + %, By an abhstract result of the theory of evolution equations (see [7)

Theczam 4.2) it is sufficient to show that

Hiiithe i i Daial

load bk o

o {I + an)-1z + (1 + AB)“z when n*®, ¥ A>0 and ¥ 2 €D(B)N D(Bn) .

(B, designates the operator B corresponding to the obstacle Wn). Setting

a (I + XBn)'1z and y = (I + XB)"z and 2-guing as in Appendix 2 we know that E

T rrm
~

el

~ 1
= - H < 1-1)
Yo - % satisfies v, € X {ve HO(R) : vix) XWn(x) a.e. x 6 1} and

A it R

~ ~ 1 ~ ~
; f qrad y_*qrad(v - y )dx + ! y (v -y )dax 2 (8z,v = u) _
{ Q n n Tg'n n W ey o) :

Vvekx A Then by the results of the theory of Variational Inequalities (and thanks to

il

the fact that wn +§ in H‘(ﬂ)) we obtain ;n * ; =y -2z {(strongly) in H;(R) when

ol Lt

n'bm‘ n

Remark 5. The above result improves a previous one of [15] concerning the case

¥ix) 28>0 a.e. x @8

when P(x) 2 § > 0 but without any additional reqularity hypotheses we don't know if =

the identification, after a finite time, between u and a soclution of the linear heat

equation occurs or not. Nevertheless the following result shows that in this case the
asymptotic behaviour is not very different.

Proposition 6. Let V¥ ¢ Lz(ﬂ) with Y(x) > § a,e. on &, for some & > 0, and

. u, ] HL(Q). Then, with the notation of the Lemma 4, we have

(32) h(t,x; Ty ug(To,x)) < u(t,x) € h(t,x:O,uO(x)) a.e, (t,x) € (T, ) *x &,

0'5 E

where ug is the solution of (1) corresponding to ¥(x) = § and Ty is given in

Theorem 3., In particular u(t) * 0 (strongly) in Lp(Q) for every

b
b o weisuel

1 € p €+ when ¢t + =,

i

-17-
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Proof, From Theorem 3 ug(t,*) = h(t,*)T,ug(Ty,*)) with T = e+ |83 N, then

7 bl

Rty

T

Proposition 3 and Lemma 4 lead to the estimate (32), So u(t) + 0 (strongly) in ()

for every 1 €S p € 4=, B

sy gl d il

i
F
£
b
g

We consider now (in some particular cases) the problem of choosing 1lim u(t) among
[

Sl

all the equilibrium pointe of (1),

il e gl

Proposition 7, let V @ Lz(ﬂ) with ¥ 20 a.,e, on &, and Y, [~} H;(ﬂ). Then the

following holds:

a) if u, >0 a.eson fl, u(t,x) =0 a.e, x6 {xc: uy(x) = 0 and

Y(x) = 0}, ¥t > 0. Moreover 1lim u(t,x) = 0 {weakly) in HL(Q) -
e =

; b) if Bug €0 in D'A), u(t,x) =u lx) ae. x & {x80: ¥(x) =0} ve>o.

e ——

" Proof. a) Ry Lemmas 4 and 5 it follows

0 € u(e,x) < uo(x) + oY) o

On the other hand
0 € u(t,x) < h(t,x;0,u,)

5 which implies that u(t,x) + 0 (strongly) in L%(2) when t + % Then if u, is the ;

3 weak limit point of u{t) when ¢t * ® due to the compactness of the inclusion

HL(@) € 17(R) we deduce that u(t,x) *u, (strongly) in 13(R). Part b) is a :
o

consequence of the fact that u(t,x) ? uo(x) as it can be checked from the definition of

u. Then the conclusion holds by the Lemma 4. ®
Part a) of the previous result showa that if the measure of the set
{x @ @ ¢ ¥(x) = 0} is positive then the sacond assertion of Theorem 3 is not possible.

Part b) gives a simple situation where :@'m u(t) 18 not identically zero.

Lt e

Remark 6. The equation of problem (1) can ohviously be written as

u, + Max{-4u,-y} = 0

and then it ia similar to the so called Bellman's eguatinn of Dynamic Programming (see e.g. :

* ‘ {1]). It would be interesting to know if our results can be proved (or improved) by

stochastic arguments,
i

Remark 7. In [8]) the study of the asymptotir hehaviour of the solutions of the problem

(28) is also proposed, Our methods remain still valid and its application is left to the

b Lt

g

reader.
-18-
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APPENDIX 1., Basic Theory of Accretive Operators

Given a Banach space X and an operator A t D(A) C X * P(X) we call

u g C(io,®) ¢+ X) a semiqroup solution of the Ahstract Eguation

(A1) -g% + Au® 0 on (0,%)

if there exists XP > 0, kn + 0 when n * ® and a sequence (a:} k = 0,1,00+ satisfying

n n
a - a
(A.2) —“—T—ﬂ+n"(‘ao. K = 1,2,000sn G N

and such that the sequence u (t) defined by un(t) = a: if kkn <t < (k+1)An verity
lu(e) - u (B0 €A,
Roughly (A.2) represents a simple implicit Fuler approximation of (A.1) and we are
defining solutions of (A.1) to be limits of solutions of these difference approximations.
There are many criteria ensuring the existence of the Xn-appxoximate soluticn L
being a simple one the following "“range condition":
(A.3) R(I + AA) DD(A) ¥ A >0
(see details in the survey article of Crandall [10])). The question of the convergence of
such % seguence lead to the notion of accretive operator.

Definition A.1. An operator A : D(A) C X * P(X) 1is called accretive if

v [x,y],[x,y] € A
(A 4) O Mx =X)L < Wx =% + Aly - 9)0 for all A > 0.
If X is also a Banach lattice then A is called T-accretive if ¥[x,y],[X,¥] € A

(A.5) Mx - DN < x -2 + Mv = 9T for all A5 0,

*
where h+ = max(h,n).( ) Finally if A satisfies (A.4) and R(I + AA) =X ¥ A > 0

A is called m-accretive,

Proposition A.1. let A be accrative (resp. T-accretive)., let u0 e D(A), 1If there

eaxists an Xn—upnroxinate solution wu of (A.1) such that lun(o) - uol ¢ Xn then there

* . : + + - - .
(*)1f X 1is a normal Ranach lattice (i,o, Mu'0 < Iv'0 and ™8 € WU implies
ful € Nyl) then any T-accretive operator is also accretive,

«19a-
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exiats u Q C([0,®) 1+ X) semiqroup molution of (A.}) such that u{0) = u_.

0

Moreover it
u and (G are semigroup solutions of (A.1) then

fu(t) - G(6)0 € 1u(0) - G(0)N (resp. Mu(t) - a(eN*1 < Kuto) - dcon*n
1.0, the application S(t)u0 = u(t)

is a semiqroup of contractiona on D{A),

This proposition ia proved in {121 (resp. in [2]) for accretive (resp. T-accretive)

operatora. In hoth works more sophisticated situationa are alsc considered.

Let us introduce some notation that provideas an alternative characterization of

accretivaneas and T-accretiveness (often easier to verify in practice than (A.4) and

(A.S)). For x,y & X, define

t(x,y) = inf Ix + Ayd - kxd

A>0

r b - Ixl
q(x'y) = gup —Lt—AZX—L

A¢0
and also

t¥(x,y) = int
ANO

i ar e - it
(% _+ er x ' °+(X1V) = Sup
<0

Hx + ap) e - it
'y

when X is assumed to be a Banach lattice. It is easy to check that A is accreive

(resp., T-accretive) if and only if

T(x = R,y - 9) 20 (resp. tH(x - x,v=%) 20

for all [x,y),Ix,y) € A, If A satisfies the stronger assumption

o(x - R,y - ) > 0 (resp. o*(x - %,y - ) > 0)

for all I[x,y],[%x,¥] 6 A, A is called strongly accretive (resp. strongly T-accretive).

It

is well-known (see [10]) that a densely defined, linear and accretive (resp. T-accretive)

operator in a strongly accretive (resp. T-accretive) one.

The advantage of these alternative characterization is that for certain spaces X the

above products are easy to compute:

20~
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Lamma A.1. (Cofc Sato [19,). -Lﬁ Q CR

where

N
1) if x = P() for 1 ¢p ¢
1 p=1, tee
= ‘{ |£] sign feq dx £ § 0
™) = o*(f,q) =
1t
1) if x=1'@)

T+(f,q) = max{f a*gsdx, a @ L“, a(x) € sign+f(x) a.e.}
o+(f,q) - min{f asgedx, o @ L“, a(x) € siqn"'t(x) a.e.}
«
1) 4if X =L (R)

tH(£,q) = max{1im ess sup[alx)q(x) : x @ 8(£,M)],a @ L, a(x) @ Sign*E(x) a.e.}
Ato

0+(£,q) = min{lim ess inf[u(x)q(x) 1 X @ ﬂ(f,k)],a ] L',a(x) ¢ aign*t(x) a.e.}

Ato
Qe = {x 60 |[£x)] >tV - A} and
L
. 1 4f v 0 . 1 if v»>0
SiqnG(V) - ' sign (v) ={[0,1} if v =0
0 if v ‘ 0 0 if v <o, a

When X is a Hilbert space of scalar product { , ) it is easy to see that A is

accretive if and only if A is monotone (i.e. (x - X,y - 9) 0 W [x.v].[§,§l 6 A)s In

this case the classes of m-accretive operatora and of maximal monotone ones coincide (see

-21-
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APPENDIX 2. The Problam P* (B givan hy (3)) is well posed on L'(2) and H°

(M

The main aim of thiv appendix is to prove that P* is a well posed problem on L‘(ﬂ)
(vhen V @ H‘(ﬂ), veo, (-Ay)" @ La(ﬂ) and B is given by (8))) that is the statement of
Propoaition 1.

lemma A.2, Assume ¥ @ 13(R), ¥ > 0 a.e, on 0 and consider the operator A en )

given by (12) i.e,

DA) = {w @ L' (R) ¢ Blx,wix)) @ W) M) and 8BLx,w0)) @ LT(M)
Aw = -4B(*,w(*)) if w @ D(A) .

Then A imr T-accretive in L‘(ﬂ).

Proof. The oparator =4 defined in L‘(ﬂ) by D(=4) « {w @ w;"(ﬂ) t bw @ L‘(ﬂ)} is a
strongly T-accretive opsrator in L‘(ﬂ). Then for any u* @ D(=4) and any a(x) ¢ L.(ﬂ)
such that a(x) @ sign+u'(x) a,e, x G, wa have

(A, 6) | -fuveadx > 0,
f

Now let [u,v),[8,9) € A {f.e. u,i €@ D(A) and v = -AB(x,u), Vv = =AB(x,1)), ‘Then

ut = B(*,u) - 8(*,4) helonges to D(=-4), Taking

1 4f {(u - 0){(x) ® 0 and u*{x) > 0
ak(x) = R
0 4if (u = u){x) € 0 and uw(x) ¢ 0 or (u = d)(x) ¢ 0 and u*(x) = 0
then a*(x) G L (R and a*(x) @ sign (u(x) = d(x)) N sign*ur(x), so

[ (au - ad)arax » 0
a

by (A.6), which shows the T-accretiveness of operator A, ®
Our next step is to prove the range condition (A.5) which is only well known for

not depending on x (see Brezis-Strauss [9]), For it we beqin with a technical lemma

Lemma A.3. Assume ¥ to be a measurable function on @ and let B given hy (5). Then

(A7) B"(x,r) =1 + Y{r + ¥(x)) Vr 6 D(B“(x,')). a.ea, x 610

being Y(r) the maximal monotone qraph of Rz defined by
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(A.8)  Y(r) =0 if r >0, Y(0) = (~%,0] and Y(r) = ¢ (the empty set) if r < 0 ,

Proof. If r > «YP(x) it is clear that B"(x,r) ar + Y{r + P(x))e It a e B”(x,r)

with r = «)(x) then a=r + (a -r) where (a -r) 20 and so (a - r) @ Y(0),

Conversely if a =r + h (h & Y(0)) then «Min{y(x),-x} = r = -Y(x) and a @ 3'1(x,r). .

lemma A.,4, lat ¢ € H’(ﬂ) be such that ¢ » 0 a.e. on Q and Ay is a measure with

(-4y)” @ Lz(ﬂ). Let B given by (5). Then the operator A is m-accretive in L‘(ﬂ).

More concretely, for all f € L1(9) there exists a unique u € L1(9) with

B(x,u) & wé'q(n) (h<acx ) such that

N
N -1

u(x) - AAB(x,u(x)) = £f(x) a.e. on R
(A.9) -

B(x,u(x)) =0 on 3R .

Proof. Set h(x) = f(x,u(x))s Then u 1is a solution of (A.9) if and only if

he w;'1(ﬂ), &h © L‘(Q) and =Mh(x) + B"(x,h(x)) 8 f(x) a.e, x 61, or equivalently

(by Lemma A, 3)

=A8h(x) + h(x) + v(h(x) + ¥(x)) 2@ £(x) a.e. x 6 R
(A.10)

h=0 on 9

Pue to the accretiveness of operator (-AA + I) on L1(Q) and from the monotonicity of
Y we know that if h € D(-A) is the solution of (A.10) corresponding to f € L’(Q) then
(Re11) BIE - (-Mdh + h)) = [f = (-ABR +RID ., < HE - £N
L () L ()
(see Rrezis-Strauss [9]). In particular, the coercivity of the operator (=AA + I) in
L' () implies that

(A.12]  ath - R . < A-AA(h = h) + (h = P)N \ < 2Mf - £ , for some @ > O .
L' () L' (R) L (R)

From (A.12) the unigueness follows. To prove the existence of solution it suffices to
consider f bheing in a dense set of L‘(ﬂ). Indeed, let hn (with -)‘Ahn + hn (5} LI(Q))

be the solution of (A,10) corresponding to fn and fn * £ in L‘(ﬂ). By (A.12) we have
alh - h 0 € I-AA(h < h ) + (h =h ) 20 - £ 1
n m n m

L) L) n ™)
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and then th *+ h and -}\Ahn + hn + =A\h + h; finally f - (=AAh + h) € Y{u + ¢) since
Y is maximal.
Actually, when f € Lz(ﬂ) and h @ H;(ﬂ) is the solution of the Variational
Inequality
h{x) > -¥(x) a.e. x6Q
(A,13} ~\dh + h > f a,e, on @
(h + ?)(-XAh +h-£f) =0 ae,on &
h =.0 on 39
it is well known (due to the hypothesis on ¥) that h & K(R) N H () (see Brezis
{5))s fTherefore h eatisfigs (A.10). Finally the function u = £ + Ah ~ A is such that

h{x) 6 B(x,u(x)) a.e. x6 0 and so u is the solution of (A.9). (The reqularity on

CB(x,u(x)) come from the fact that AB(*,u(*)) € L'(), see (9]), ®

S—_"T )

Proof. It.is enouéh to see I (R)C DAY

Caaray Nz, < gl + ColeAdp) )

Lemma A.5 Astume ¢ and B as in Lemma A.4. Then D(A) =1l @).

() o
. Take f 6 L () and for each A > 0 let

2y (< Hzfﬂ) N Hg(ﬂ) be the solution of (A.10). By Theorem I.1 of Brezis [5]) we get

14a) ) L2(9) -

with C iadependent of A, 'Therefare {sz} converges. weakly in H2(9) and then

".strongly in Lz(ﬂ), when X '* 0, But [sz} + 0 in Lz(ﬂ) hecauge

lzzl o < 1fr {by the‘éomparison results) and then #zxﬂ 2 <cr, ¢!
L (@) L (R) . o L)

» independent of A (because - ~y(x) € - z;(x) < zy(x) a.e. x 6 Q). Settinhg

yx(x) = f(x) + Xhzx(x) it'is clear the yx(x) e 8-1(x,z)(x)) a.e. %60 (see Lomma
AJ3), Yy 6 D{A) and ¥, ‘converges (weakly) to £ in Lz(ﬁ) when A "o, ®inally from
(A.14) we deduce that 1lim lyxl. = NEl 2 and then ¥, corveryes (atrongly) in
2 A*0- Lo (8) 1.°(R) o .
L), = Co
The proof of'Propqsitxbn 1 is now a consequence of Proposition a1 and Lemmas A2, A4’

and AS. Problem P* {5 alsoc well posed on the space H-j(ﬂ):

Lemma A.6. Assume Y Gvbz(ﬂ), ¥ >0 a.e. on Q. Consider the operator E on H (R)

given Ey (21), 1.a,
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E = (~8)eRe(~8)"" ,

Then E 1is m-accretive in H-1(9).

’

Proof. Recalling that the scalar product in H-1(9) = (Hé(ﬂ))' is given by

(F,9) _, _y = (=076, (-1)7"g)

H xH H;xH;
then if [x,y),[X,y) € E
(x = %,y - G)H_1XH_1 = (=0 - R -0 Ny - 9))H,xﬂ1 >0
00
1 1 k|

because [(=A) x,(=-0)"'y], [(-8)~ i,(-A)""{:] € B, Analogously R(I + AB) = u(‘)m) implies

R(I +AE) = H (R), ¥A>0. u

The following unpublished result of A, Damlamian characterizes the operator E when

1
Ve Hotﬂ).

Proposition A.2, Assume ¥ 6 H((R) with ¥ >0 ae. on f. Then E = 30, where ¢ is

the convex, l.s.c. function defined in H_ ' () by

1 2 1 +,2
--?-l¢" 2 +(u,-—w>_ +—2-I(u +w) ]

L2(9) H 1xH:) L)

i verimt o wt "

d(u) =

+0 otherwise .

Remark A.1. When ¥(x) £ §, the function Vv=v+6 (v solution of P*) coincides with

the solution of the one-phase Stefan Prchlem

3t - 4B(v) = 0 on (0,%) x 9

vad on (0,2) x 3Q
{;(O,') = vyl + § on R

where 6O(r) =0 if r € -6 and 8(r) =r + 68 if r > -8. 1In this case, formulation (1)

coincides with the one Ggiven in (201 (see also the Appendix of [13]).
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APPENDIX 3. The Problem P is Well Posed on L (%).

L
The accretivenesa in L () of the operator C gqiven in (17), i.e.,

D(C) = {w & L7(R) N W) (M) 1 bw & L (R), Minlv,Av} G L7(R))
cw = -Min{y,8w} 1if w € Dlc) ,

is an application of the abhstract result of [4) or [17). Here we show it directly.

Lemma A.7. Assumed V 6 Lz(ﬂ), ¢ >0 a.e. on 8,

the operator C is T-accretive in

L ().

Proof. Let (u,v],[d,¥] € C. Let us assume that w = (u ~ 4)* f 0. Then if B is given

by (5) T+(w,8(x,-Au) - B(x,-A0)) » 0 because otherwise for some A > 0 one would have

B(x,-8u) - B(x,~80) < 0 a.e, un fi(w,A). From the monotonicity of B(x,*) we would

deduce that =-A{u - 4) € 0 a.e, on %(w,A). But (u ~ §) = hwt w ~ A in the boundary of
L
w,A) and the application of the maximum principle would lead to a contradiction, ¥

About the range condition one has:

Lemma A.8. Assumed V¢ € Cztﬁ) with ¢ 2 0 on T, ¢ satisfias the range condition

(A.3). More exactly, for all f € L“(ﬁ) n H;(ﬂ) such that Af ¢ L“(Q) there exists

u € D(C) solution of

(A.15) u+lu=f £f A>0.
Moreover
(A.16) 1ul ,  Sc(iagl o+ Ayl )

L () L () L (R

for some constant ¢ independent of A and f.

Proof. Set : = u - f, Then it is easy to see that u 1is a solution of (A.15) if and

] - ~ oo ~ ~ -1 ;(x)
only if u ¢ HO(Q) NL (R), AueL (R) and u satisfies -bulx) - B (x,- —T__) 3 AMf(x)

a.e. x € R, or equivalently (see Lemma A,3)

I-AG(x) + 22 y(px) - 2L 5 arx) ase. x @@
(R.17)

l W=0 on an
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where Y 1{is the graph given by (A.8), Problem (A.17) coincides with the Variational K

bl i Rt i
S———

Inequality
(9(x) € Ap(x) a.e. x € Q E
i : ~ :
- -Au + % < Af a.e. on 8 1
(A.18) 1
{ 3
3 (- xW)(-—A; +-§ - Af) = 0 a.e, on E
= - i
E u=0 on 30 . 4
- k g
b |
i 1 It is well kvown that under the assumption ¢ € Cz(n), V20 on T there exists a unique :j
’ E|
1 ~ ~ P
1 ne Hl(ﬂ) solution of (A.18) satisfying A4u € LB(Q) and 'j
l 12Aul - < c(hagt + 1Ayt - (see [(18)). Then u € D(C) and it verifies 3

L (R) L () L ()
(A.15) and (A,!6), =

Problem P can actually he "solved" in terms of the Proposition 1., Indeed, when

[

u0 & D(C), by Proposition A.1 and Lemmas A.7 and A.f there exists a unique ue;Lu(Q)

semigroup solution of P. Finally the reqularity of u follows from Theorem 2 of Benilan-

Ha [4] (Notice that the hypothesis R(B(x,*)) = R a.e. x 6 1 made in (4) is only used to

rtrob B s Aol d

e o e e

i

a
prove the existence of the L (1) semigqroup solution).
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